应用科学研究进展 开放获取

抽象的

Acoustical characterization of copper nanofluid

A. K. Choudhary

Nanofluids are attracting a great deal of interest with their enormous potential to provide enhanced performance properties, particularly with respect to heat transfer. Metal nanoparticles can be used in various application fields, such as optical filters or nanolithography. Copper nano-particles have been synthesized by the flow-levitation method and coated with carbon-and-hydrogen films through the hollow-cathode glow discharge. The uncoated and coated Cu nano-particles have been analyzed by transmission electron microscopy, X-ray diffraction, and infrared absorption. Their size, dispersion, and coating thickness have been examined. The addition of copper nanoparticle did not change the dependence of heat transfer on acoustic cavitations and fluid sub cooling. Ultrasonic velocity is the speed in which sound propagates in a certain material. It depends on material density and elasticity. It is related in a simple way to the various coefficients of compressibility, isentropic, isenthalpic and isothermal, hence the importance of its measurement and modeling in temperature and pressure ranges are widely used. In this work we have measured the ultrasonic velocity at different temperature and frequencies of 15 nm copper fluid using Interferometer technique

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证