应用科学研究进展 开放获取

抽象的

Artificial Neural Network (ANN) Prediction of Porosity and Water Saturation of Shaly Sandstone Reservoirs

Hamada Ghareb M, Elsakka Ahmed and Nyein Chaw Y

This paper introduces a successful application of neural networks in predicting porosity, fluid saturation and identifying lithofacies using well log data. This technique utilizes the prevailing unknown nonlinear relationship in data between well logs and the reservoir properties, to determine accurately certain petrophysical properties of the reservoir rocks under different compaction conditions. In heterogeneous reservoirs classical methods face problems in determining the relevant petrophysical parameters accurately. Applications of artificial intelligence have recently made this challenge a possible practice. This paper presents successful achievement in applying two trained NN, one for porosity prediction and second training for one for water saturation using 5 log data inputs: (Gamma Ray)GR, (Laterolog Deep)LLD, (density) RHOB, (Neutron) NPHI.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证