加布里埃爾·薩多斯基
抽象的
(生物)醫學研究不斷發現具有高影響力的藥物,具有治療嚴重文明疾病的巨大潛力。然而,此類藥物通常在水中(並因此在生物相關介質中)表現出非常低的溶解度。由於它們在儲存期間或給藥後容易結晶,因此不能用於下一代藥物的開發。因此,目前正在開發的有前景的藥物中,大約 80% 從未成為藥物。有許多提高藥物生物利用度的方法。它們中的大多數旨在以穩定性較差但溶解性更好的形式配製藥物,其目的是在賦形劑(例如聚合物)的幫助下穩定。然而,為給定藥物找到合適的賦形劑非常困難,目前通常透過「試誤」方法並輔以昂貴的高通量篩選技術來確定。這導致開發先進配方的巨大成本,並且當沒有找到合適的配方時,甚至會阻止大量非常有前途的藥物在藥物中的應用。由於藥物製劑通常必須在製造和使用之間進行儲存,因此必須確保其特性在此期間不會改變。當它們熱力學穩定時,即藥物濃度低於製劑中的藥物溶解度時,這一點得到最好的保證。後者在很大程度上受藥物和賦形劑的種類、溫度和相對濕度的影響。結果表明,濕度對 ASD 中藥物溶解度及其動力學穩定性的影響可以使用熱力學模型進行預測 (1-3, 5)。這提供了 ASD 是否會在潮濕條件下結晶(不穩定)的資訊。然而,結晶動力學的研究通常是透過耗時的長期實驗來進行,並反覆研究結晶度,例如透過 X 射線衍射。因此,在這項工作中,還將證明 ASD 中藥物結晶的動力學只能基於簡單的吸水測量並結合潮濕條件下聚合物中藥物溶解度的最先進的熱力學模型來確定。後者可以考慮 ASD 中水吸附和藥物結晶的相互影響,同時預測吸收的水和結晶藥物的量。因此,了解實驗水吸附隨時間的變化可以直接提供 ASD 結晶度,而無需額外的 X 射線測量。無定形固體分散體(ASD)已廣泛應用於製藥業,以提高難溶性藥物的溶解度。然而,物理穩定性仍然是製劑開發中最具挑戰性的問題之一。許多因素可以透過不同的機制影響物理穩定性,因此需要對這些因素進行深入的了解。
Pharmaceutical scientists are increasingly interested in amorphous drug formulations especially because of their higher dissolution rates. Consequently, the thorough characterization and analysis of these formulations are becoming more and more important for the pharmaceutical industry. Here, fluorescence-lifetime-imaging microscopy (FLIM) was used to monitor the crystallization of an amorphous pharmaceutical compound, indomethacin. Initially, we identified different solid indomethacin forms, amorphous and γ- and α-crystalline, on the basis of their time-resolved fluorescence. All of the studied indomethacin forms showed biexponential decays with characteristic fluorescence lifetimes and amplitudes. Using this information, the crystallization of amorphous indomethacin upon storage in 60 °C was monitored for 10 days with FLIM. The progress of crystallization was detected as lifetime changes both in the FLIM images and in the fluorescence-decay curves extracted from the images. The fluorescence-lifetime amplitudes were used for quantitative analysis of the crystallization process. We also demonstrated that the fluorescence-lifetime distribution of the sample changed during crystallization, and when the sample was not moved between measuring times, the lifetime distribution could also be used for the analysis of the reaction kinetics. The recrystallization of amorphous solid dispersions may lead to a loss in the dissolution rate, and consequently reduce bioavailability. The purpose of this work is to understand factors governing the recrystallization of amorphous drug-polymer solid dispersions, and develop a kinetics model capable of accurately predicting their physical stability. Recrystallization kinetics was measured using differential scanning calorimetry for initially amorphous efavirenz-polyvinylpyrrolidone solid dispersions stored at controlled temperature and relative humidity. The experimental measurements were fitted by a new kinetic model to estimate the recrystallization rate constant and microscopic geometry of crystal growth. The new kinetics model was used to illustrate the governing factors of amorphous solid dispersions stability. Temperature was found to affect efavirenz recrystallization in an Arrhenius manner, while recrystallization rate constant was shown to increase linearly with relative humidity. Polymer content tremendously inhibited the recrystallization process by increasing the crystallization activation energy and decreasing the equilibrium crystallinity. The new kinetic model was validated by the good agreement between model fits and experiment measurements. A small increase in polyvinylpyrrolidone resulted in substantial stability enhancements of efavirenz amorphous solid dispersion. The new established kinetics model provided more accurate predictions than the Avrami equation.
無定形固體分散體 (ASD) 在開發中越來越頻繁地用於難溶性藥物化合物。這些系統由聚合物穩定的無定形活性藥物成分組成,以產生具有改善的物理和溶液穩定性的系統。 ASD 通常被認為是提高活性藥物成分錶觀溶解度的一種手段。本篇綜述將討論 ASD 的製備和表徵方法,重點在於理解和預測穩定性。將強調對過飽和度的理論理解和預測體內表現。此外,也將總結臨床前和臨床開發工作,讓讀者了解開發 ASD 時的風險和主要陷阱。使用無定形固體分散體是一種有趣的策略,可以透過提高難溶性藥物的溶出速率和程度來提高其生物利用度。缺乏對物理化學及其體內行為的了解仍然阻礙製藥業的全面突破。
傳
加布里埃爾·薩多斯基 (Gabriele Sadowski) 是多特蒙德工業大學熱力學教授。她是北萊茵-威斯特法倫州科學與藝術學院和德國工程科學院的院士。她是德國熱力學工作小組的主席以及歐洲熱力學和運輸特性工作小組的德國代表。她在化學、生物化學和製藥工程領域的高聲譽期刊上發表了約 200 篇科學出版物。她研究的主要重點是研究複雜系統的熱力學性質,特別是但不限於包含生物和藥物分子的系統。為了對這些系統的熱力學穩定性進行建模,她的團隊開發了目前全球最常用的熱力學模型PC-SAFT,該模型於2001 年發布。特弗里德·威廉·萊布尼茨獎2011年德國科學基金會。