牙周病学和口腔修复学 开放获取

抽象的

Relationships between the Reduced Glutathione (GSH) Reactivity of Dental Methacrylates, Michael-reaction Acceptors and their 13C-NMR Chemical Shift of β-Carbons

Seiichiro Fujisawa

(Meth)acrylates, α,β-unsaturated esters are Michaelresponse acceptors and have concentrated on antagonistic wellbeing exercises, for example, oral sicknesses and hypersensitive contact dermatitis. A connection between decreased glutathione (GSH) reactivity and lethality for (meth)acrylate monomers has been set up. To foresee the GSH reactivity of dental methacrylate monomers, the 13C-NMR compound movements of β-carbon (δ Cβ) and the 1H-NMR movements of the proton joined to the β-carbon (δ Ha, δ Hb) were decided for a preparation set of acrylate and methacrylate monomers having diverse nucleophiles. Writing information for monomer GSH reactivity were utilized for expectation of the GSH reactivity of dental methacrylates. Critical direct connections between GSH reactivity (log K) and δ Cβ or δ Ha were watched (p<0.001). A worthy relationship for the LD50 in mice of acrylates and methacrylates was seen as far as log K (p<0.005, exception: HEMA). The oral mouse LD50 values for some dental dimethacrylates, two Michael-response acceptors (two-twofold bonds, two β-carbons) were assessed by direct relapse bend fitting of GSH reactivityharmfulness reaction information. The present discoveries propose that NMR spectra may be helpful for anticipating the danger of dental methacrylates.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证