精神病理学学报 开放获取

抽象的

Zinc enhances hippocampal long-term potentiation at CA1 synapses through NR2B containing NMDA receptors

John A Sullivan

The role of zinc (Zn2+), a modulator of N-methyl-D-aspartate (NMDA) receptors, in regulating long-term synaptic plasticity at hippocampal CA1 synapses is poorly understood. The effects of exogenous application of Zn2+ and of chelation of endogenous Zn2+ were examined on long-term potentiation (LTP) of stimulus-evoked synaptic transmission at Schaffer collateral (SCH) synapses in field CA1 of mouse hippocampal slices using whole-cell patch clamp and field recordings. Low micromolar concentrations of exogenous Zn2+ enhanced the induction of LTP, and this effect required activation of NMDA receptors containing NR2B subunits. Zn2+ elicited a selective increase in NMDA/NR2B fEPSPs, and removal of endogenous Zn2+ with high-affinity Zn2+ chelators robustly reduced the magnitude of stimulusevoked LTP. Taken together, our data show that Zn2+ at physiological concentrations enhances activation of NMDA receptors containing NR2B subunits, and that this effect enhances the magnitude of LTP.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证